Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Eur Heart J Cardiovasc Pharmacother ; 9(4): 371-386, 2023 06 02.
Article in English | MEDLINE | ID: covidwho-2283193

ABSTRACT

BACKGROUND: In post-coronavirus disease-19 (post-COVID-19) conditions (long COVID), systemic vascular dysfunction is implicated, but the mechanisms are uncertain, and the treatment is imprecise. METHODS AND RESULTS: Patients convalescing after hospitalization for COVID-19 and risk factor matched controls underwent multisystem phenotyping using blood biomarkers, cardiorenal and pulmonary imaging, and gluteal subcutaneous biopsy (NCT04403607). Small resistance arteries were isolated and examined using wire myography, histopathology, immunohistochemistry, and spatial transcriptomics. Endothelium-independent (sodium nitroprusside) and -dependent (acetylcholine) vasorelaxation and vasoconstriction to the thromboxane A2 receptor agonist, U46619, and endothelin-1 (ET-1) in the presence or absence of a RhoA/Rho-kinase inhibitor (fasudil), were investigated. Thirty-seven patients, including 27 (mean age 57 years, 48% women, 41% cardiovascular disease) 3 months post-COVID-19 and 10 controls (mean age 57 years, 20% women, 30% cardiovascular disease), were included. Compared with control responses, U46619-induced constriction was increased (P = 0.002) and endothelium-independent vasorelaxation was reduced in arteries from COVID-19 patients (P < 0.001). This difference was abolished by fasudil. Histopathology revealed greater collagen abundance in COVID-19 arteries {Masson's trichrome (MT) 69.7% [95% confidence interval (CI): 67.8-71.7]; picrosirius red 68.6% [95% CI: 64.4-72.8]} vs. controls [MT 64.9% (95% CI: 59.4-70.3) (P = 0.028); picrosirius red 60.1% (95% CI: 55.4-64.8), (P = 0.029)]. Greater phosphorylated myosin light chain antibody-positive staining in vascular smooth muscle cells was observed in COVID-19 arteries (40.1%; 95% CI: 30.9-49.3) vs. controls (10.0%; 95% CI: 4.4-15.6) (P < 0.001). In proof-of-concept studies, gene pathways associated with extracellular matrix alteration, proteoglycan synthesis, and viral mRNA replication appeared to be upregulated. CONCLUSION: Patients with post-COVID-19 conditions have enhanced vascular fibrosis and myosin light change phosphorylation. Rho-kinase activation represents a novel therapeutic target for clinical trials.


Subject(s)
COVID-19 , Cardiovascular Diseases , Humans , Female , Middle Aged , Male , rho-Associated Kinases/metabolism , 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/drug therapy , Post-Acute COVID-19 Syndrome
2.
Cardiovasc Res ; 2022 Oct 11.
Article in English | MEDLINE | ID: covidwho-2280272

ABSTRACT

Raised blood pressure (BP) is the leading cause of preventable death in the world. Yet, its global prevalence is increasing, and it remains poorly detected, treated, and controlled in both high- and low-resource settings. From the perspective of members of the International Society of Hypertension based in all regions, we reflect on the past, present, and future of hypertension care, highlighting key challenges and opportunities, which are often region-specific. We report that most countries failed to show sufficient improvements in BP control rates over the past three decades, with greater improvements mainly seen in some high-income countries, also reflected in substantial reductions in the burden of cardiovascular disease and deaths. Globally, there are significant inequities and disparities based on resources, sociodemographic environment, and race with subsequent disproportionate hypertension-related outcomes. Additional unique challenges in specific regions include conflict, wars, migration, unemployment, rapid urbanization, extremely limited funding, pollution, COVID-19-related restrictions and inequalities, obesity, and excessive salt and alcohol intake. Immediate action is needed to address suboptimal hypertension care and related disparities on a global scale. We propose a Global Hypertension Care Taskforce including multiple stakeholders and societies to identify and implement actions in reducing inequities, addressing social, commercial, and environmental determinants, and strengthening health systems implement a well-designed customized quality-of-care improvement framework.

4.
5.
Nat Med ; 28(6): 1303-1313, 2022 06.
Article in English | MEDLINE | ID: covidwho-1860386

ABSTRACT

The pathophysiology and trajectory of post-Coronavirus Disease 2019 (COVID-19) syndrome is uncertain. To clarify multisystem involvement, we undertook a prospective cohort study including patients who had been hospitalized with COVID-19 (ClinicalTrials.gov ID NCT04403607 ). Serial blood biomarkers, digital electrocardiography and patient-reported outcome measures were obtained in-hospital and at 28-60 days post-discharge when multisystem imaging using chest computed tomography with pulmonary and coronary angiography and cardio-renal magnetic resonance imaging was also obtained. Longer-term clinical outcomes were assessed using electronic health records. Compared to controls (n = 29), at 28-60 days post-discharge, people with COVID-19 (n = 159; mean age, 55 years; 43% female) had persisting evidence of cardio-renal involvement and hemostasis pathway activation. The adjudicated likelihood of myocarditis was 'very likely' in 21 (13%) patients, 'probable' in 65 (41%) patients, 'unlikely' in 56 (35%) patients and 'not present' in 17 (11%) patients. At 28-60 days post-discharge, COVID-19 was associated with worse health-related quality of life (EQ-5D-5L score 0.77 (0.23) versus 0.87 (0.20)), anxiety and depression (PHQ-4 total score 3.59 (3.71) versus 1.28 (2.67)) and aerobic exercise capacity reflected by predicted maximal oxygen utilization (20.0 (7.6) versus 29.5 (8.0) ml/kg/min) (all P < 0.01). During follow-up (mean, 450 days), 24 (15%) patients and two (7%) controls died or were rehospitalized, and 108 (68%) patients and seven (26%) controls received outpatient secondary care (P = 0.017). The illness trajectory of patients after hospitalization with COVID-19 includes persisting multisystem abnormalities and health impairments that could lead to substantial demand on healthcare services in the future.


Subject(s)
COVID-19 , Aftercare , COVID-19/complications , Female , Humans , Male , Middle Aged , Patient Discharge , Prospective Studies , Quality of Life , SARS-CoV-2
6.
PLoS One ; 16(11): e0260283, 2021.
Article in English | MEDLINE | ID: covidwho-1523456

ABSTRACT

SARS-CoV-2 viral attachment and entry into host cells is mediated by a direct interaction between viral spike glycoproteins and membrane bound angiotensin-converting enzyme 2 (ACE2). The receptor binding motif (RBM), located within the S1 subunit of the spike protein, incorporates the majority of known ACE2 contact residues responsible for high affinity binding and associated virulence. Observation of existing crystal structures of the SARS-CoV-2 receptor binding domain (SRBD)-ACE2 interface, combined with peptide array screening, allowed us to define a series of linear native RBM-derived peptides that were selected as potential antiviral decoy sequences with the aim of directly binding ACE2 and attenuating viral cell entry. RBM1 (16mer): S443KVGGNYNYLYRLFRK458, RBM2A (25mer): E484GFNCYFPLQSYGFQPTNGVGYQPY508, RBM2B (20mer): F456NCYFPLQSYGFQPTNGVGY505 and RBM2A-Sc (25mer): NYGLQGSPFGYQETPYPFCNFVQYG. Data from fluorescence polarisation experiments suggested direct binding between RBM peptides and ACE2, with binding affinities ranging from the high nM to low µM range (Kd = 0.207-1.206 µM). However, the RBM peptides demonstrated only modest effects in preventing SRBD internalisation and showed no antiviral activity in a spike protein trimer neutralisation assay. The RBM peptides also failed to suppress S1-protein mediated inflammation in an endogenously expressing ACE2 human cell line. We conclude that linear native RBM-derived peptides are unable to outcompete viral spike protein for binding to ACE2 and therefore represent a suboptimal approach to inhibiting SARS-CoV-2 viral cell entry. These findings reinforce the notion that larger biologics (such as soluble ACE2, 'miniproteins', nanobodies and antibodies) are likely better suited as SARS-CoV-2 cell-entry inhibitors than short-sequence linear peptides.


Subject(s)
Angiotensin-Converting Enzyme 2/immunology , Antiviral Agents/pharmacology , Peptides/pharmacology , Protein Binding/drug effects , Spike Glycoprotein, Coronavirus/immunology , Virus Internalization , A549 Cells , Humans , Protein Interaction Domains and Motifs
8.
CJC Open ; 3(10): 1257-1272, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1272339

ABSTRACT

The current COVID-19 pandemic, caused by the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) virus, represents the largest medical challenge in decades. It has exposed unexpected cardiovascular vulnerabilities at all stages of the disease (pre-infection, acute phase, and subsequent chronic phase). The major cardiometabolic drivers identified as having epidemiologic and mechanistic associations with COVID-19 are abnormal adiposity, dysglycemia, dyslipidemia, and hypertension. Hypertension is of particular interest, because components of the renin-angiotensin system (RAS), which are critically involved in the pathophysiology of hypertension, are also implicated in COVID-19. Specifically, angiotensin-converting enzyme-2 (ACE2), a multifunctional protein of the RAS, which is part of the protective axis of the RAS, is also the receptor through which SARS-CoV-2 enters host cells, causing viral infection. Cardiovascular and cardiometabolic comorbidities not only predispose people to COVID-19, but also are complications of SARS-CoV-2 infection. In addition, increasing evidence indicates that acute kidney injury is common in COVID-19, occurs early and in temporal association with respiratory failure, and is associated with poor prognosis, especially in the presence of cardiovascular risk factors. Here, we discuss cardiovascular and kidney disease in the context of COVID-19 and provide recent advances on putative pathophysiological mechanisms linking cardiovascular disease and COVID-19, focusing on the RAS and ACE2, as well as the immune system and inflammation. We provide up-to-date information on the relationships among hypertension, diabetes, and COVID-19 and emphasize the major cardiovascular diseases associated with COVID-19. We also briefly discuss emerging cardiovascular complications associated with long COVID-19, notably postural tachycardia syndrome (POTS).


La pandémie actuelle de COVID-19 causée par le coronavirus du syndrome respiratoire aigu sévère 2 (SRAS-CoV-2) est le plus grand enjeu médical des dernières décennies. Elle a mis en évidence des vulnérabilités cardiovasculaires imprévues à tous les stades de la COVID-19 (avant l'infection, pendant la phase aiguë et pendant la phase chronique subséquente). Les principaux facteurs cardiométaboliques dont les associations épidémiologiques et mécanistiques avec la COVID-19 ont été avérées comprennent l'adiposité anormale, la dysglycémie, la dyslipidémie et l'hypertension. L'hypertension suscite un intérêt particulier, car certaines composantes du système rénine-angiotensine (SRA), dont le rôle est crucial dans la physiopathologie de l'hypertension, sont également en cause dans la COVID-19. Plus précisément, l'enzyme de conversion de l'angiotensine 2 (ECA2), une protéine multifonctionnelle du SRA faisant partie de l'axe protecteur du SRA, est également le récepteur permettant au virus SRAS-CoV-2 d'entrer dans les cellules hôtes et de provoquer une infection virale. Les affections cardiovasculaires et cardiométaboliques concomitantes ne font pas que prédisposer les personnes qui en sont atteintes à la COVID-19, elles constituent également des complications de l'infection à SRAS-CoV-2. En outre, de plus en plus de données probantes indiquent que l'atteinte rénale aiguë est fréquente en cas de COVID-19, qu'elle survient tôt et fait l'objet d'une association temporelle avec l'insuffisance respiratoire, et qu'elle est associée à un pronostic sombre, notamment en présence de facteurs de risque cardiovasculaires. Nous discutons ici des maladies cardiovasculaires et rénales dans le contexte de la COVID-19, et présentons les progrès récents sur les mécanismes physiopathologiques en cause dans le lien entre les maladies cardiovasculaires et la COVID-19 en nous attardant sur le SRA et l'ECA2, ainsi que sur le système immunitaire et l'inflammation. Nous présentons de l'information à jour sur les liens entre l'hypertension, le diabète et la COVID-19, et soulignons les principales maladies cardiovasculaires associées à la COVID-19. Nous analysons également brièvement les complications cardiovasculaires émergentes associées à la COVID-19 de longue durée, notamment le syndrome de tachycardie orthostatique posturale (STOP).

9.
Clin Sci (Lond) ; 135(2): 387-407, 2021 01 29.
Article in English | MEDLINE | ID: covidwho-1054073

ABSTRACT

The two axes of the renin-angiotensin system include the classical ACE/Ang II/AT1 axis and the counter-regulatory ACE2/Ang-(1-7)/Mas1 axis. ACE2 is a multifunctional monocarboxypeptidase responsible for generating Ang-(1-7) from Ang II. ACE2 is important in the vascular system where it is found in arterial and venous endothelial cells and arterial smooth muscle cells in many vascular beds. Among the best characterized functions of ACE2 is its role in regulating vascular tone. ACE2 through its effector peptide Ang-(1-7) and receptor Mas1 induces vasodilation and attenuates Ang II-induced vasoconstriction. In endothelial cells activation of the ACE2/Ang-(1-7)/Mas1 axis increases production of the vasodilator's nitric oxide and prostacyclin's and in vascular smooth muscle cells it inhibits pro-contractile and pro-inflammatory signaling. Endothelial ACE2 is cleaved by proteases, shed into the circulation and measured as soluble ACE2. Plasma ACE2 activity is increased in cardiovascular disease and may have prognostic significance in disease severity. In addition to its enzymatic function, ACE2 is the receptor for severe acute respiratory syndrome (SARS)-coronavirus (CoV) and SARS-Cov-2, which cause SARS and coronavirus disease-19 (COVID-19) respectively. ACE-2 is thus a double-edged sword: it promotes cardiovascular health while also facilitating the devastations caused by coronaviruses. COVID-19 is associated with cardiovascular disease as a risk factor and as a complication. Mechanisms linking COVID-19 and cardiovascular disease are unclear, but vascular ACE2 may be important. This review focuses on the vascular biology and (patho)physiology of ACE2 in cardiovascular health and disease and briefly discusses the role of vascular ACE2 as a potential mediator of vascular injury in COVID-19.


Subject(s)
Angiotensin I/metabolism , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Peptide Fragments/metabolism , Proto-Oncogene Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Vascular Diseases/virology , Animals , Blood Vessels/enzymology , Humans , Proto-Oncogene Mas , Receptor, Angiotensin, Type 2/metabolism , Renin-Angiotensin System , SARS-CoV-2/metabolism , Vascular Diseases/metabolism
10.
Hypertension ; 76(4): 1104-1112, 2020 10.
Article in English | MEDLINE | ID: covidwho-992137

ABSTRACT

The prognostic power of circulating cardiac biomarkers, their utility, and pattern of release in coronavirus disease 2019 (COVID-19) patients have not been clearly defined. In this multicentered retrospective study, we enrolled 3219 patients with diagnosed COVID-19 admitted to 9 hospitals from December 31, 2019 to March 4, 2020, to estimate the associations and prognostic power of circulating cardiac injury markers with the poor outcomes of COVID-19. In the mixed-effects Cox model, after adjusting for age, sex, and comorbidities, the adjusted hazard ratio of 28-day mortality for hs-cTnI (high-sensitivity cardiac troponin I) was 7.12 ([95% CI, 4.60-11.03] P<0.001), (NT-pro)BNP (N-terminal pro-B-type natriuretic peptide or brain natriuretic peptide) was 5.11 ([95% CI, 3.50-7.47] P<0.001), CK (creatine phosphokinase)-MB was 4.86 ([95% CI, 3.33-7.09] P<0.001), MYO (myoglobin) was 4.50 ([95% CI, 3.18-6.36] P<0.001), and CK was 3.56 ([95% CI, 2.53-5.02] P<0.001). The cutoffs of those cardiac biomarkers for effective prognosis of 28-day mortality of COVID-19 were found to be much lower than for regular heart disease at about 19%-50% of the currently recommended thresholds. Patients with elevated cardiac injury markers above the newly established cutoffs were associated with significantly increased risk of COVID-19 death. In conclusion, cardiac biomarker elevations are significantly associated with 28-day death in patients with COVID-19. The prognostic cutoff values of these biomarkers might be much lower than the current reference standards. These findings can assist in better management of COVID-19 patients to improve outcomes. Importantly, the newly established cutoff levels of COVID-19-associated cardiac biomarkers may serve as useful criteria for the future prospective studies and clinical trials.


Subject(s)
Coronavirus Infections , Creatine Kinase, MB Form/blood , Heart Diseases , Natriuretic Peptide, Brain/blood , Pandemics , Peptide Fragments/blood , Pneumonia, Viral , Troponin I/blood , Betacoronavirus/isolation & purification , Biomarkers/blood , COVID-19 , China/epidemiology , Coronavirus Infections/blood , Coronavirus Infections/mortality , Coronavirus Infections/therapy , Female , Heart Diseases/blood , Heart Diseases/mortality , Heart Diseases/virology , Hospitalization/statistics & numerical data , Humans , Male , Middle Aged , Mortality , Outcome Assessment, Health Care , Pneumonia, Viral/blood , Pneumonia, Viral/mortality , Pneumonia, Viral/therapy , Predictive Value of Tests , Prognosis , Retrospective Studies , SARS-CoV-2
11.
Clin Sci (Lond) ; 134(24): 3233-3235, 2020 12 23.
Article in English | MEDLINE | ID: covidwho-975035

ABSTRACT

As this extraordinary year, blemished by COVID-19, comes to an end, I look back as Editor-in-Chief to the many great successes and new initiatives of Clinical Science. Despite the challenges we all faced during 2020, our journal has remained strong and vibrant. While we have all adapted to new working conditions, with life very different to what it was pre-COVID-19, the one thing that remains intact and secure is the communication of scientific discoveries through peer-reviewed journals. I am delighted to share with you some of the many achievements of our journal over the past year and to highlight some exciting new activities planned for 2021.


Subject(s)
Biomedical Research/standards , Editorial Policies , Periodicals as Topic/standards , Biomedical Research/statistics & numerical data , Biomedical Research/trends , COVID-19/epidemiology , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Forecasting , Humans , Pandemics/prevention & control , Periodicals as Topic/statistics & numerical data , Periodicals as Topic/trends , SARS-CoV-2/immunology , SARS-CoV-2/physiology
12.
Cardiovasc Res ; 116(14): 2185-2196, 2020 12 01.
Article in English | MEDLINE | ID: covidwho-664611

ABSTRACT

BACKGROUND: COVID-19 is typically a primary respiratory illness with multisystem involvement. The prevalence and clinical significance of cardiovascular and multisystem involvement in COVID-19 remain unclear. METHODS: This is a prospective, observational, multicentre, longitudinal, cohort study with minimal selection criteria and a near-consecutive approach to screening. Patients who have received hospital care for COVID-19 will be enrolled within 28 days of discharge. Myocardial injury will be diagnosed according to the peak troponin I in relation to the upper reference limit (URL, 99th centile) (Abbott Architect troponin I assay; sex-specific URL, male: >34 ng/L; female: >16 ng/L). Multisystem, multimodality imaging will be undertaken during the convalescent phase at 28 days post-discharge (Visit 2). Imaging of the heart, lung, and kidneys will include multiparametric, stress perfusion, cardiovascular magnetic resonance imaging, and computed tomography coronary angiography. Health and well-being will be assessed in the longer term. The primary outcome is the proportion of patients with a diagnosis of myocardial inflammation. CONCLUSION: CISCO-19 will provide detailed insights into cardiovascular and multisystem involvement of COVID-19. Our study will inform the rationale and design of novel therapeutic and management strategies for affected patients. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov identifier NCT04403607.


Subject(s)
COVID-19/diagnostic imaging , Heart Diseases/diagnostic imaging , Heart/diagnostic imaging , Kidney Diseases/diagnostic imaging , Kidney/diagnostic imaging , Lung/diagnostic imaging , Multimodal Imaging , COVID-19/therapy , COVID-19/virology , Convalescence , Electrocardiography , Heart/virology , Heart Diseases/virology , Host-Pathogen Interactions , Humans , Kidney/virology , Kidney Diseases/virology , Longitudinal Studies , Lung/virology , Predictive Value of Tests , Prospective Studies , Research Design , SARS-CoV-2/pathogenicity , Scotland , Time Factors
13.
Cardiovasc Res ; 116(10): 1666-1687, 2020 08 01.
Article in English | MEDLINE | ID: covidwho-143871

ABSTRACT

The novel coronavirus disease (COVID-19) outbreak, caused by SARS-CoV-2, represents the greatest medical challenge in decades. We provide a comprehensive review of the clinical course of COVID-19, its comorbidities, and mechanistic considerations for future therapies. While COVID-19 primarily affects the lungs, causing interstitial pneumonitis and severe acute respiratory distress syndrome (ARDS), it also affects multiple organs, particularly the cardiovascular system. Risk of severe infection and mortality increase with advancing age and male sex. Mortality is increased by comorbidities: cardiovascular disease, hypertension, diabetes, chronic pulmonary disease, and cancer. The most common complications include arrhythmia (atrial fibrillation, ventricular tachyarrhythmia, and ventricular fibrillation), cardiac injury [elevated highly sensitive troponin I (hs-cTnI) and creatine kinase (CK) levels], fulminant myocarditis, heart failure, pulmonary embolism, and disseminated intravascular coagulation (DIC). Mechanistically, SARS-CoV-2, following proteolytic cleavage of its S protein by a serine protease, binds to the transmembrane angiotensin-converting enzyme 2 (ACE2) -a homologue of ACE-to enter type 2 pneumocytes, macrophages, perivascular pericytes, and cardiomyocytes. This may lead to myocardial dysfunction and damage, endothelial dysfunction, microvascular dysfunction, plaque instability, and myocardial infarction (MI). While ACE2 is essential for viral invasion, there is no evidence that ACE inhibitors or angiotensin receptor blockers (ARBs) worsen prognosis. Hence, patients should not discontinue their use. Moreover, renin-angiotensin-aldosterone system (RAAS) inhibitors might be beneficial in COVID-19. Initial immune and inflammatory responses induce a severe cytokine storm [interleukin (IL)-6, IL-7, IL-22, IL-17, etc.] during the rapid progression phase of COVID-19. Early evaluation and continued monitoring of cardiac damage (cTnI and NT-proBNP) and coagulation (D-dimer) after hospitalization may identify patients with cardiac injury and predict COVID-19 complications. Preventive measures (social distancing and social isolation) also increase cardiovascular risk. Cardiovascular considerations of therapies currently used, including remdesivir, chloroquine, hydroxychloroquine, tocilizumab, ribavirin, interferons, and lopinavir/ritonavir, as well as experimental therapies, such as human recombinant ACE2 (rhACE2), are discussed.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/pharmacology , Betacoronavirus/pathogenicity , Coronavirus Infections , Myocarditis , Pandemics , Pneumonia, Viral , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/drug therapy , Humans , Myocarditis/diagnosis , Myocarditis/drug therapy , Myocarditis/virology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/drug therapy , Renin-Angiotensin System/drug effects , Risk Assessment , SARS-CoV-2
14.
Circ Res ; 126(12): 1671-1681, 2020 06 05.
Article in English | MEDLINE | ID: covidwho-72368

ABSTRACT

RATIONALE: Use of ACEIs (angiotensin-converting enzyme inhibitors) and ARBs (angiotensin II receptor blockers) is a major concern for clinicians treating coronavirus disease 2019 (COVID-19) in patients with hypertension. OBJECTIVE: To determine the association between in-hospital use of ACEI/ARB and all-cause mortality in patients with hypertension and hospitalized due to COVID-19. METHODS AND RESULTS: This retrospective, multi-center study included 1128 adult patients with hypertension diagnosed with COVID-19, including 188 taking ACEI/ARB (ACEI/ARB group; median age 64 [interquartile range, 55-68] years; 53.2% men) and 940 without using ACEI/ARB (non-ACEI/ARB group; median age 64 [interquartile range 57-69]; 53.5% men), who were admitted to 9 hospitals in Hubei Province, China from December 31, 2019 to February 20, 2020. In mixed-effect Cox model treating site as a random effect, after adjusting for age, gender, comorbidities, and in-hospital medications, the detected risk for all-cause mortality was lower in the ACEI/ARB group versus the non-ACEI/ARB group (adjusted hazard ratio, 0.42 [95% CI, 0.19-0.92]; P=0.03). In a propensity score-matched analysis followed by adjusting imbalanced variables in mixed-effect Cox model, the results consistently demonstrated lower risk of COVID-19 mortality in patients who received ACEI/ARB versus those who did not receive ACEI/ARB (adjusted hazard ratio, 0.37 [95% CI, 0.15-0.89]; P=0.03). Further subgroup propensity score-matched analysis indicated that, compared with use of other antihypertensive drugs, ACEI/ARB was also associated with decreased mortality (adjusted hazard ratio, 0.30 [95% CI, 0.12-0.70]; P=0.01) in patients with COVID-19 and coexisting hypertension. CONCLUSIONS: Among hospitalized patients with COVID-19 and coexisting hypertension, inpatient use of ACEI/ARB was associated with lower risk of all-cause mortality compared with ACEI/ARB nonusers. While study interpretation needs to consider the potential for residual confounders, it is unlikely that in-hospital use of ACEI/ARB was associated with an increased mortality risk.


Subject(s)
Angiotensin Receptor Antagonists/adverse effects , Angiotensin-Converting Enzyme Inhibitors/adverse effects , Coronavirus Infections/epidemiology , Hospital Mortality , Hypertension/epidemiology , Pneumonia, Viral/epidemiology , Aged , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , COVID-19 , Coronavirus Infections/complications , Female , Humans , Hypertension/complications , Hypertension/drug therapy , Inpatients/statistics & numerical data , Male , Middle Aged , Pandemics , Pneumonia, Viral/complications
15.
Clin Sci (Lond) ; 134(7): 747-750, 2020 04 17.
Article in English | MEDLINE | ID: covidwho-45274

ABSTRACT

Angiotensin converting enzyme 2 (ACE2) is the major enzyme responsible for conversion of Ang II into Ang-(1-7). It also acts as the receptor for severe acute respiratory syndrome (SARS)-coronavirus (CoV)-2, which causes Coronavirus Disease (COVID)-19. In recognition of the importance of ACE2 and to celebrate 20 years since its discovery, the journal will publish a focused issue on the basic science and (patho)physiological role of this multifunctional protein.


Subject(s)
Coronavirus Infections/metabolism , Coronavirus Infections/pathology , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/metabolism , Pneumonia, Viral/pathology , Angiotensin-Converting Enzyme 2 , Betacoronavirus/physiology , COVID-19 , Cardiovascular Diseases/metabolism , Humans , Pandemics , Renin-Angiotensin System , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL